LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER – **APRIL 2023**

UPH 1502 – INTRODUCTION TO DIGITAL ELECTRONICS

Date: 09-05-2023 Time: 01:00 PM - 04:00 PM

Dept. No.

Max. : 100 Marks

	SECTION A			
Answ	er ALL the Questions			
1.	1. Define the following		(5 x 1 = 5)	
i	Positive and negative logic.	K1	CO1	
ii	Multiplexer.	K1	CO1	
iii	2's complement representation of a binary number.	K1	CO1	
iv	ASCII.	K1	CO1	
v	Race around condition.	K1	CO1	
2.	Fill in the blanks	$(5 \times 1 = 5)$		
i	On a Karnaugh map two adjacent 1's are called a	K 1	CO1	
ii	A logic circuit with one input and many outputs is called a	K1	CO1	
iii	The result of binary subtraction of 011100 from 1011100	K1	CO1	
iv	bits are required to represent decimal 15.	K1	CO1	
v	When S=0, R=0, CLK=X then the output will be	K 1	CO1	
3.	State true or false	(5 x 1 = 5)		
i	Fundamental products are also called as min terms.	K2	CO1	
ii	A decoder has 2 ⁿ inputs and n address lines	K2	CO1	
iii	The binary number for decimal 255 is 1001 1111	K2	CO1	
iv	If the sign bit is one, the given number is negative.	K2	CO1	
v	A flip flop cannot be used as a register	K2	CO1	
4.	MCQ	$(5 \times 1 = 5)$		
i	Which among the below given Boolean expressions do not obey De Morgan's theorem?	K2	CO1	
	a) $\overline{X + Y} = \overline{X} \cdot \overline{Y}$ b) $\overline{X \cdot Y} = \overline{X} + \overline{Y}$ c) $X \cdot Y = \overline{X + Y}$ d) None of the above			

ii	How many bits of information does a flip-flop store?	K2	CO1
	a) One bit b) two bits c) three bits d) ten bits		
		vo	CO1
111	Convert $(214)_8$ into decimal.	K2	COI
	b) $(141)_{10}$		
	c) $(142)_{10}$		
	d) $(130)_{10}$		
iv	What is the 2's complement representation of 1101 0011?	K2	CO1
	a) 0101 0101 b) 0010 1101 c) 0001 1100 d)1010 1000		
12	A 3-input NOR gate has eight input possibilities, how many of those	K2	CO1
U	possibilities will result in a HIGH output?		001
	a) 1 b) 2 c) 7 d) 8		
	SECTION B	•••	
Answ	er any TWO of the following in about 150 words	(2 x 1	0 = 20)
5.	(a)Analyse and show that	K3	CO2
	\overline{A} B C + A \overline{B} C + A B \overline{C} + ABC = AB + BC + CA(6 marks)		
	(b)Construct the logic gates EX-NOR and EX-OR gates and give the	2	
	appropriate truth table. (4marks)		
6.	Sketch the circuit of clocked RS flip flop and with the truth table explain	K3	CO2
	its working.		
7.	Explain the working of 4 input multiplexer with a block diagram and truth	K3	CO2
	table.		
8.	With the truth table describe in detail the working of a full adder and draw	/ K3	CO2
	the circuit for its SUM and CARRY expression.		
	SECTION C		
Answ	er any TWO of the following in 150 words (2	x 10 =	= 20)
9.	Simplify:	K4	CO3
	(a) Add using binary number system $(94)_{10} \& (125)_{10}$ (5 marks).		
	(b) Subtract using binary number system $(56)_{10}$ from $(93)_{10}$ (5 marks).		
10	With the diagram explain the BCD to seven segment decoder in detail	K4	CO3
11	State and prove Demorgan's theorem	тът V Л	
11. 	State and prove Demorgan's theorem.		
12.		Λ4	005
	SECTION D		20)
Answ	er any UNE of the following (1	X 20 =	= 20)
13.	(a) Summarize the working of NOR gate as an universal gate (12 marks)(b) Solve the following	K5	CO4
	i) Add 215 & 125 in binary number system (4 marks)		
	ii) Subtract 123 & 65 in binary number system (4 marks)		
14.	(a) Convert	K5	CO4
	i. $(65534)_{10}$ to Hex		
	ii. $(FFFF.A)_{16}$ to decimal		
	iii. $(98.625)_{10}$ to octal		

	iv. $(111011011.111011)_2$ to Hex $(4 \times 3 = 12 \text{marks})$		
	(b)) Explain the working of D- flip flop with the circuit diagram and truth table. (8 marks)	1	
	SECTION E		
Answer any ONE of the following		$\overline{(1 \ x \ 20 = 20)}$	
15.	(a)Design a K-map and give the logic expression	K6	CO5
	(i)Y = F (A,B,C,D) = $\sum (0,2,4,6,8) + \sum_{d} (10,11,12,13,14,15)$ (8 marks)		
	(ii) $Y = F(A,B,C,D) = \sum (0,1,3,5,7,9,11,12,13,14,15)$ (6 marks)		
	(b) Change (i) $(1010111)_2$ to Gray code. (3 marks)		
	(ii) $(111011)_G$ to binary code. (3 marks)		
16.	(a) Describe the working of JK flip flop with a neat diagram and	d K6	CO5
	truthtable. (12 marks)		
	(b) $(3EF.8)_{16} = (X)_{10} = (Y)_2 = (Z)_8$. Find X, Y, Z (8 marks)		

\$\$\$\$\$\$\$