LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - APRIL 2023
UPH 1502 - INTRODUCTION TO DIGITAL ELECTRONICS

Date: 09-05-2023
Time: 01:00 PM - 04:00 PM \square Max. : 100 Marks

SECTION A			
Answer ALL the Questions			
1. Define the following		($5 \times 1=5$)	
i	Positive and negative logic.	K1	CO1
ii	Multiplexer.	K1	CO1
iii	2's complement representation of a binary number.	K1	CO1
iv	ASCII.	K1	CO1
v	Race around condition.	K1	CO1
2. Fill in the blanks		($5 \times 1=5$)	
i	On a Karnaugh map two adjacent 1's are called a............	K1	CO1
$i i$	A logic circuit with one input and many outputs is called a	K1	CO1
iii	The result of binary subtraction of 011100 from 1011100	K1	CO1
iv	\ldots. bits are required to represent decimal 15.	K1	CO1
v	When $\mathrm{S}=0, \mathrm{R}=0, \mathrm{CLK}=\mathrm{X}$ then the output will be	K1	CO1
3. State true or false		($5 \times 1=5$)	
i	Fundamental products are also called as min terms.	K2	CO1
ii	A decoder has 2^{n} inputs and n address lines	K2	CO1
iii	The binary number for decimal 255 is 10011111	K2	CO1
iv	If the sign bit is one, the given number is negative.	K2	CO1
v	A flip flop cannot be used as a register	K2	CO1
4. MCQ		$(5 \times 1=5)$	
i	Which among the below given Boolean expressions do not obey De Morgan's theorem? a) $\overline{X+Y}=\bar{X} \cdot \bar{Y}$ b) $\overline{X . Y}=\bar{X}+\bar{Y}$ c) $\mathrm{X} . \mathrm{Y}=\overline{X+Y}$ d) None of the above	K2	CO1

ii	How many bits of information does a flip-flop store? a) One bit b) two bits c) three bits d) ten bits	K2	CO1
iii	Convert (214) 8 into decimal. a) $(140)_{10}$ b) $(141)_{10}$ c) $(142)_{10}$ d) $(130)_{10}$	K2	CO1
iv	What is the 2's complement representation of 11010011 ? a) 01010101 b) 00101101 c) 00011100 d$) 10101000$	K2	CO 1
v	A 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a HIGH output? a) 1 b) 2 c) 7 d) 8	K2	CO1
SECTION B			
Answer any TWO of the following in about 150 words		$(2 \times 10=20)$	
5.	(a)Analyse and show that $\bar{A} \mathrm{BC}+\mathrm{A} \bar{B} \mathrm{C}+\mathrm{AB} \bar{C}+\mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}(6$ marks $)$ (b)Construct the logic gates EX-NOR and EX-OR gates and give the appropriate truth table. (4marks)	K3	CO 2
6.	Sketch the circuit of clocked RS flip flop and with the truth table explain its working.	K3	CO 2
7.	Explain the working of 4 input multiplexer with a block diagram and truth table.	K3	CO 2
8.	With the truth table describe in detail the working of a full adder and draw the circuit for its SUM and CARRY expression.	K3	CO 2
SECTION C			
Answ	ny TWO of the following in 150 words ($2 \times$	$(2 \times 10=20)$	
9.	Simplify: (a) Add using binary number system (94) $)_{10} \&(125)_{10} \quad$ (5 marks). (b) Subtract using binary number system (56) ${ }_{10}$ from (93$)_{10}$ (5 marks).	K4	CO 3
10.	With the diagram explain the BCD to seven segment decoder in detail.	K4	CO3
11.	State and prove Demorgan's theorem.	K4	CO3
12.	Explain the working of NAND latch with a neat circuit diagram	K4	CO3
SECTION D			
Answer any ONE of the following		$(1 \times 20=20)$	
13.	(a) Summarize the working of NOR gate as an universal gate (12 marks) (b) Solve the following i) Add 215 \& 125 in binary number system (4 marks) ii) Subtract $123 \& 65$ in binary number system (4 marks)	K5	CO4
14.	(a) Convert i. $(65534)_{10}$ to Hex ii. (FFFF.A) ${ }_{16}$ to decimal iii. $(98.625)_{10}$ to octal	K5	CO 4

(b)) Explain the working of D- flip flop with the circuit diagram and truth table. (8 marks)

SECTION E

Answer any ONE of the following

($1 \times 20=20)$
15. (a)Design a K-map and give the logic expression
(i) $Y=F(A, B, C, D)=\sum(0,2,4,6,8)+\sum_{d}(10,11,12,13,14,15)(8$ marks $)$
(ii) $\mathrm{Y}=\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,3,5,7,9,11,12,13,14,15)(6$ marks $)$
(b) Change (i) (1010111) $)_{2}$ to Gray code. (3 marks)
(ii) $(111011)_{\mathrm{G}}$ to binary code. (3 marks)
16. (a) Describe the working of JK flip flop with a neat diagram and K6 truthtable. (12 marks)
(b) (3EF.8) $)_{16}=(\mathrm{X})_{10}=(\mathrm{Y})_{2}=(\mathrm{Z})_{8}$. Find $\mathrm{X}, \mathrm{Y}, \mathrm{Z}(8$ marks)

